Prevention of microgliosis halts early memory loss in a mouse model of Alzheimer's disease

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Dokumenter

  • Fulltext

    Forlagets udgivne version, 11,1 MB, PDF-dokument

  • Mandy S.J. Kater
  • Christiaan F.M. Huffels
  • Takuya Oshima
  • Niek S. Renckens
  • Jinte Middeldorp
  • Boddeke, Erik
  • August B. Smit
  • Bart J.L. Eggen
  • Elly M. Hol
  • Mark H.G. Verheijen

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive decline, the neuropathological formation of amyloid-beta (Aβ) plaques and neurofibrillary tangles. The best cellular correlates of the early cognitive deficits in AD patients are synapse loss and gliosis. In particular, it is unclear whether the activation of microglia (microgliosis) has a neuroprotective or pathological role early in AD. Here we report that microgliosis is an early mediator of synaptic dysfunction and cognitive impairment in APP/PS1 mice, a mouse model of increased amyloidosis. We found that the appearance of microgliosis, synaptic dysfunction and behavioral impairment coincided with increased soluble Aβ42 levels, and occurred well before the presence of Aβ plaques. Inhibition of microglial activity by treatment with minocycline (MC) reduced gliosis, synaptic deficits and cognitive impairments at early pathological stages and was most effective when provided preventive, i.e., before the onset of microgliosis. Interestingly, soluble Aβ levels or Aβ plaques deposition were not affected by preventive MC treatment at an early pathological stage (4 months) whereas these were reduced upon treatment at a later stage (6 months). In conclusion, this study demonstrates the importance of early-stage prevention of microgliosis on the development of cognitive impairment in APP/PS1 mice, which might be clinically relevant in preventing memory loss and delaying AD pathogenesis.

OriginalsprogEngelsk
TidsskriftBrain, Behavior, and Immunity
Vol/bind107
Sider (fra-til)225-241
Antal sider17
ISSN0889-1591
DOI
StatusUdgivet - 2023

Bibliografisk note

Funding Information:
The authors would like to thank Iris Bosch and Kyra Swildens (VU University, Amsterdam, The Netherlands) for acquiring microscopic images and the analysis of IHC parameters, Yvonne Gouwenberg (VU University, Amsterdam) for performing immunoblotting and Hilmar van Weering, Tjalling Nijboer and Maaike Brummer (University Medical Center Groningen, The Netherlands) for help with microglia morphometric analysis.

Publisher Copyright:
© 2022 The Author(s)

ID: 330893577