Muscle fibre size and myonuclear positioning in trained and aged humans

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Standard

Muscle fibre size and myonuclear positioning in trained and aged humans. / Battey, Edmund; Levy, Yotam; Pollock, Ross D.; Pugh, Jamie N.; Close, Graeme L.; Kalakoutis, Michaeljohn; Lazarus, Norman R.; Harridge, Stephen D.R.; Ochala, Julien; Stroud, Matthew J.

I: Experimental Physiology, 2024.

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Harvard

Battey, E, Levy, Y, Pollock, RD, Pugh, JN, Close, GL, Kalakoutis, M, Lazarus, NR, Harridge, SDR, Ochala, J & Stroud, MJ 2024, 'Muscle fibre size and myonuclear positioning in trained and aged humans', Experimental Physiology. https://doi.org/10.1113/EP091567

APA

Battey, E., Levy, Y., Pollock, R. D., Pugh, J. N., Close, G. L., Kalakoutis, M., Lazarus, N. R., Harridge, S. D. R., Ochala, J., & Stroud, M. J. (2024). Muscle fibre size and myonuclear positioning in trained and aged humans. Experimental Physiology. https://doi.org/10.1113/EP091567

Vancouver

Battey E, Levy Y, Pollock RD, Pugh JN, Close GL, Kalakoutis M o.a. Muscle fibre size and myonuclear positioning in trained and aged humans. Experimental Physiology. 2024. https://doi.org/10.1113/EP091567

Author

Battey, Edmund ; Levy, Yotam ; Pollock, Ross D. ; Pugh, Jamie N. ; Close, Graeme L. ; Kalakoutis, Michaeljohn ; Lazarus, Norman R. ; Harridge, Stephen D.R. ; Ochala, Julien ; Stroud, Matthew J. / Muscle fibre size and myonuclear positioning in trained and aged humans. I: Experimental Physiology. 2024.

Bibtex

@article{702c87ff5789450c9071ab196428c70b,
title = "Muscle fibre size and myonuclear positioning in trained and aged humans",
abstract = "Changes in myonuclear architecture and positioning are associated with exercise adaptations and ageing. However, data on the positioning and number of myonuclei following exercise are inconsistent. Additionally, whether myonuclear domains (MNDs; i.e., the theoretical volume of cytoplasm within which a myonucleus is responsible for transcribing DNA) and myonuclear positioning are altered with age remains unclear. The aim of this investigation was to investigate relationships between age and activity status and myonuclear domains and positioning. Vastus lateralis muscle biopsies from younger endurance-trained (YT) and older endurance-trained (OT) individuals were compared with age-matched untrained counterparts (YU and OU; OU samples were acquired during surgical operation). Serial, optical z-slices were acquired throughout isolated muscle fibres and analysed to give three-dimensional coordinates for myonuclei and muscle fibre dimensions. The mean cross-sectional area (CSA) of muscle fibres from OU individuals was 33%–53% smaller compared with the other groups. The number of nuclei relative to fibre CSA was 90% greater in OU compared with YU muscle fibres. Additionally, scaling of MND volume with fibre size was altered in older untrained individuals. The myonuclear arrangement, in contrast, was similar across groups. Fibre CSA and most myonuclear parameters were significantly associated with age in untrained individuals, but not in trained individuals. These data indicate that regular endurance exercise throughout the lifespan might better preserve the size of muscle fibres in older age and maintain the relationship between fibre size and MND volumes. Inactivity, however, might result in reduced muscle fibre size and altered myonuclear parameters.",
keywords = "ageing, cross-sectional area, exercise, myonuclear domains, nuclei",
author = "Edmund Battey and Yotam Levy and Pollock, {Ross D.} and Pugh, {Jamie N.} and Close, {Graeme L.} and Michaeljohn Kalakoutis and Lazarus, {Norman R.} and Harridge, {Stephen D.R.} and Julien Ochala and Stroud, {Matthew J.}",
note = "Publisher Copyright: {\textcopyright} 2024 The Authors. Experimental Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.",
year = "2024",
doi = "10.1113/EP091567",
language = "English",
journal = "Experimental Physiology",
issn = "0958-0670",
publisher = "Wiley-Blackwell",

}

RIS

TY - JOUR

T1 - Muscle fibre size and myonuclear positioning in trained and aged humans

AU - Battey, Edmund

AU - Levy, Yotam

AU - Pollock, Ross D.

AU - Pugh, Jamie N.

AU - Close, Graeme L.

AU - Kalakoutis, Michaeljohn

AU - Lazarus, Norman R.

AU - Harridge, Stephen D.R.

AU - Ochala, Julien

AU - Stroud, Matthew J.

N1 - Publisher Copyright: © 2024 The Authors. Experimental Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

PY - 2024

Y1 - 2024

N2 - Changes in myonuclear architecture and positioning are associated with exercise adaptations and ageing. However, data on the positioning and number of myonuclei following exercise are inconsistent. Additionally, whether myonuclear domains (MNDs; i.e., the theoretical volume of cytoplasm within which a myonucleus is responsible for transcribing DNA) and myonuclear positioning are altered with age remains unclear. The aim of this investigation was to investigate relationships between age and activity status and myonuclear domains and positioning. Vastus lateralis muscle biopsies from younger endurance-trained (YT) and older endurance-trained (OT) individuals were compared with age-matched untrained counterparts (YU and OU; OU samples were acquired during surgical operation). Serial, optical z-slices were acquired throughout isolated muscle fibres and analysed to give three-dimensional coordinates for myonuclei and muscle fibre dimensions. The mean cross-sectional area (CSA) of muscle fibres from OU individuals was 33%–53% smaller compared with the other groups. The number of nuclei relative to fibre CSA was 90% greater in OU compared with YU muscle fibres. Additionally, scaling of MND volume with fibre size was altered in older untrained individuals. The myonuclear arrangement, in contrast, was similar across groups. Fibre CSA and most myonuclear parameters were significantly associated with age in untrained individuals, but not in trained individuals. These data indicate that regular endurance exercise throughout the lifespan might better preserve the size of muscle fibres in older age and maintain the relationship between fibre size and MND volumes. Inactivity, however, might result in reduced muscle fibre size and altered myonuclear parameters.

AB - Changes in myonuclear architecture and positioning are associated with exercise adaptations and ageing. However, data on the positioning and number of myonuclei following exercise are inconsistent. Additionally, whether myonuclear domains (MNDs; i.e., the theoretical volume of cytoplasm within which a myonucleus is responsible for transcribing DNA) and myonuclear positioning are altered with age remains unclear. The aim of this investigation was to investigate relationships between age and activity status and myonuclear domains and positioning. Vastus lateralis muscle biopsies from younger endurance-trained (YT) and older endurance-trained (OT) individuals were compared with age-matched untrained counterparts (YU and OU; OU samples were acquired during surgical operation). Serial, optical z-slices were acquired throughout isolated muscle fibres and analysed to give three-dimensional coordinates for myonuclei and muscle fibre dimensions. The mean cross-sectional area (CSA) of muscle fibres from OU individuals was 33%–53% smaller compared with the other groups. The number of nuclei relative to fibre CSA was 90% greater in OU compared with YU muscle fibres. Additionally, scaling of MND volume with fibre size was altered in older untrained individuals. The myonuclear arrangement, in contrast, was similar across groups. Fibre CSA and most myonuclear parameters were significantly associated with age in untrained individuals, but not in trained individuals. These data indicate that regular endurance exercise throughout the lifespan might better preserve the size of muscle fibres in older age and maintain the relationship between fibre size and MND volumes. Inactivity, however, might result in reduced muscle fibre size and altered myonuclear parameters.

KW - ageing

KW - cross-sectional area

KW - exercise

KW - myonuclear domains

KW - nuclei

UR - http://www.scopus.com/inward/record.url?scp=85187113668&partnerID=8YFLogxK

U2 - 10.1113/EP091567

DO - 10.1113/EP091567

M3 - Journal article

C2 - 38461483

AN - SCOPUS:85187113668

JO - Experimental Physiology

JF - Experimental Physiology

SN - 0958-0670

ER -

ID: 386304103