Effect of PGC1-beta ablation on myonuclear organisation

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Skeletal muscle fibres are large, elongated multinucleated cells. Each nucleus within a myofibre is responsible for generating gene products for a finite volume of cytoplasm—the myonuclear domain (MND). Variation in MND sizes during atrophy, hypertrophy and disease states, are common. The factors that contribute to definitive MND sizes are not yet fully understood. Previous work has shown that peroxisome proliferator-activated receptor gamma coactivator 1α (PGC1-α) modulates MND volume, presumably to support increased biogenesis of mitochondria. The transcriptional co-regulator peroxisome proliferator-activated receptor gamma coactivator 1β (PGC1-β) is a homologue of PGC1-α with overlapping functions. To investigate the role of this protein in MND size regulation, we studied a mouse skeletal muscle specific knockout (cKO). Myofibres were isolated from the fast twitch extensor digitorum longus (EDL) muscle, membrane-permeabilised and analysed in 3 dimensions using confocal microscopy. PGC1-β ablation resulted in no significant difference in MND size between cKO and wild type (WT) mice, however, subtle differences in nuclear morphology were observed. To determine whether these nuclear shape changes were associated with alterations in global transcriptional activity, acetyl histone H3 immunostaining was carried out. We found there was no significant difference in nuclear fluorescence intensity between the two genotypes. Overall, the results suggest that PGC-1α and PGC-1β play different roles in regulating nuclear organisation in skeletal muscle; however, further work is required to pinpoint their exact functions.

OriginalsprogEngelsk
TidsskriftJournal of Muscle Research and Cell Motility
Vol/bind40
Udgave nummer3-4
Sider (fra-til)335-341
Antal sider7
ISSN0142-4319
DOI
StatusUdgivet - 1 dec. 2019
Eksternt udgivetJa

ID: 245661795